2019年11月26日 星期二

Comparison of L1 and L5 Bands GNSS Signals Acquisition

Source https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165328/

Abstract

Nowadays, civil Global Navigation Satellite System (GNSS) signals are available in both L1 and L5 bands. A receiver does not need to acquire independently the signals in both bands coming from a same satellite, since their carrier Doppler and code delay are closely related. Therefore, the question of which one to acquire first rises naturally. Although the common thought would tell the L1 band signals which are narrowband, an accurate comparison has never been done, and the decision is not as easy as it seems. Indeed, L5 band signals have several advantages such as stronger power, lower carrier Doppler, or a pilot channel, unlike the Global Positioning System (GPS) L1 C/A signal. The goal of this paper is therefore to compare the acquisition of L1 and L5 bands signals (GPS L1 C/A and L5, Galileo E1 and E5a/b) to determine which one is more complex and by which factor, in terms of processing time and memory, considering hardware receivers and the parallel code search. The results show that overall the L5 band signals are more complex to acquire, but it depends strongly on the conditions. The E5 signal is always more complex to acquire than E1, while the L5 signal can have a complexity close to the L1 C/A in some cases. Moreover, precise assistance providing accurate Doppler could significantly reduce the L5 complexity below the L1 complexity.
Keywords: acquisition, complexity, Galileo, GPS, GNSS, hardware receiver

1. Introduction

The first stage of a Global Navigation Satellite System (GNSS) receiver is the acquisition, whose aim is to detect the signal and roughly estimate the code delay and the carrier frequency []. This is a computationally demanding operation since there are numerous possibilities to test, and today’s receivers are targeting higher and higher sensitivities and the ability to process more and more signals. Nowadays, Fast Fourier Transforms (FFT) are omnipresent in acquisition architectures to accelerate the acquisition, and the amount of memory needed is a major factor in a design [].
There are now several signals available per constellation, and it is not necessary to acquire the different signals coming from one satellite independently. Indeed, considering two signals coming from the same satellite (for example Global Positioning System (GPS) L1 C/A and L5 signals): They are synchronized (the primary codes start at the same time, and the data and secondary code transitions are synchronized) []. The path traveled is the same, therefore the code delay is about the same (there is a slight difference due to the ionosphere that affects them differently []. However, knowing one gives precious information on the second); the relative speed being the same, the Doppler are proportional with a known factor (even with the offset due to the local oscillator). Therefore, the main question is: “Which signal should be acquired first?”, to then help the acquisition of the other(s) signal(s). This paper aims to answer this question, and quantify it with application examples.
The answer to this question is not so simple, because each signal has its own advantages and drawbacks. For example, L5 band signals, such as the GPS L5 and Galileo E5 signals, have a high chipping rate (10 times higher than L1 frequency signals). This high chipping rate implies a high sampling frequency, which implies itself a significant amount of samples to store and process, and a lower ratio between the clock frequency of the acquisition process and the sampling frequency leading to a longer processing time []. Therefore, L1 band signals, such as the GPS L1 C/A and Galileo E1 signals, are much more interesting on this side, since there is potentially a factor five or ten in the number of samples to process and in the processing speed, thanks to the ratio of the processing and sampling frequencies. Moreover, the L5 and E5 signals have longer primary codes than the L1 C/A and E1 signals, which a priori implies the testing of more code delays, larger FFTs for the correlations, and a bigger amount of memory to store correlation results.
However, the L5 band signals also have advantages: (1) They have a higher power (1.5 dB for the pilot channel of the L5 signal compared to the L1 C/A signal, and 2 dB for the E5a/b signals compared to the E1 signal for the pilot channels), which means that similar detection performance can be obtained with lower integration times; (2) They have a pilot channel, whereas the GPS L1 C/A signal does not have one, therefore this lasts one must limit its coherent integration time, which can lead to a longer total integration time; (3) They have a lower carrier Doppler and Doppler rate (115/154 ≈ 75%), which can reduce the search space and some constraints for the acquisition architecture; and (4) They have a secondary code, which on one side complicates the acquisition, but on another side makes the data synchronization much easier, simplifying the transition to the tracking.
The goal of this paper is therefore to compare in detail the acquisition of the L1 and L5 bands signals, in terms of processing time and memory requirements. More specifically, the GPS L1 C/A and L5 signals, and the Galileo E1 and E5 signals will be considered since these are the only signals in these two bands defined in an official interface specification and broadcasted currently. Two cases will be considered, one where there is no assistance at all (equivalent to a cold start), and one there is enough assistance to determine the secondary code delay, such that the receiver does not need to search it (kind of warm start). Indeed, it is relatively easy to have an estimate of the current secondary code chip. One chip of the L5 or E5 secondary codes lasts 1 ms, which is equivalent to 300 km. Therefore, if the receiver has an estimate of the current time better than 1 ms and an estimate of its position and of the satellites position better than 300 km (achievable with almanac), it is possible to estimate the current secondary code chip, and thus there is no need to search it via a correlation. If an estimate is available but not so accurate, the number of possibilities can still be reduced, e.g., to three or four, instead of 20 or 100.

The remainder of the paper is organized as follows. Section 2 describes briefly the GNSS signals considered, summarizes their characteristics, and introduces the acquisition search method chosen (parallel code search) and the elements of interest. Section 3 provides mathematical expressions of the processing time and the memory requirements for all the possible implementations: Data channel verses pilot channel, assistance verses no assistance, coherent integration only verses use of non-coherent integration, parallel verses semi-parallel verses serial implementation. Then, Section 4 describes the methodology used for the comparison, details all the parameters selected, and compares the acquisition of the GPS L1 C/A and L5 signals, and the acquisition of the Galileo E1 and E5 signals by evaluating the expressions given in Section 3. Finally, Section 5 summarizes the outcomes.

5. Conclusions

This paper performed a very detailed comparison of the complexity of the acquisition of L1 and L5 bands signals, to determine which signal should be acquired first to then help the other, to verify the common thought that L5 band signals acquisition is more complex, and especially to quantify this ratio.
Such detailed comparison is needed because many parameters influence positively or negatively each band and each signal, such as the chipping rate, the sampling frequency, the carrier frequency, the length of the primary and secondary codes, the signal power, or the availability of a pilot channel; it is therefore difficult to make accurate estimation.
In a first part, general expressions of the processing time and memory requirements have been presented and are summarized in Table 2. Such expressions are applicable for any GNSS signal, and depend on several parameters. Some parameters depend on the signal considered, such as the number of samples in one code period (which depends on the code length and sampling frequency), or the length of the secondary code; and some parameters do not depend on the signal considered but depend on the context and design, such as the number of non-coherent integrations or the number of bits used for the quantization.
In a second part, the comparisons have been performed by evaluating the aforementioned expressions. An accurate estimation of the processing time and memory requirements has thus been done, providing all the details of the methodology, and considering many details (such as the search space that influences the probability of false alarm at the cell level and the signal-to-noise ratio required). In order to have a general view and not just one example, the following has been considered: Five sensitivities (from −140 dBm to −160 dBm with a step of 5 dBm); both unassisted and assisted case; and both coherent only integration (when applicable) and the use of non-coherent integration. Studies have been included to evaluate the impact of each element (Table 7 and Table 18).
For GPS, the L1 C/A and L5 signals have been compared. Table 10 and Figure 12 provide the ratio between the complexity of each of them considering the processing time of one frequency bin and the memory requirements, and Table 12 provides the final ratio of complexity which takes also into account the average number of frequency bins browsed until the signal detection. The developments have been validated by Matlab simulations (Table 13). The acquisition of the L5 signal is most of the time more complex. Without assistance, if the sensitivity or the coherent integration time is moderate, acquiring the L5 signal is much more complex (ratios higher than 50 most often, i.e., it may require 50 times more memory, or have a processing time that is 50 times longer, or e.g., 10 times more memory, with a 5 times longer processing time). For very high sensitivity with long coherent integration time, the complexity ratio for one frequency bin is smaller, but still to the detriment of the L5 signal, except at −160 dBm. With assistance, the complexity ratios are smaller for any sensitivity, but only those for unlimited coherent integration time are of interests, since the ratios for one frequency bin become between 0.1 and 4.6. i.e., the GPS L5 signal acquisition may be significantly less complex than the GPS L1 C/A signal one in some high sensitivity cases if only one or few frequency bins that have to be tested (which would require very accurate Doppler assistance). When considering more frequency bins, the L5 signal is more complex to acquire, except few cases.
For Galileo, the E1 signal has been compared with itself first, considering two different sampling frequencies, 4.096 MHz and 6.144 MHz, the first one being close to the minimum and the second one offering the same code loss as a BPSK signals sampled at about twice the chipping rate. Table 19 provides the ratios of complexity, and shows using a sampling frequency of 6.144 triples the complexity most of the time. It is therefore recommended to use the minimum sampling frequency of 4.096 MHz and use techniques to remove the side peaks of the main correlation peak.
Then, the E1 and E5 signals have been compared. Table 20 and Figure 14 provide the ratios of complexity for one frequency bin, and shows that the acquisition of the E5 signal is always more complex. Without assistance, acquiring the E5 signal is much more complex (ratios higher between 25 and 45). With assistance, the complexity ratios are smaller for any sensitivity, the lowest ratios being for unlimited coherent integration times; but the minimum ratio is still around 6 (without considering the input memory, else the ratios increase with the sensitivity), which makes the Galileo E5 signal acquisition significantly more complex than the Galileo E1 one even in the best case. Considering more frequency bins reduces these ratios (Table 22), however the E5 signal is still more complex to acquire.
In conclusion, the GPS and Galileo L5 band signals are overall more complex to acquire than the GPS and Galileo L1 band signals, although in some particular cases the difference may be negligible or limited. In particular, the L5 signal could show better performance in presence of very accurate assistance to avoid a significant increase of the number of frequency bins when using very long coherent integration times.
The methodology and the expressions and developments provided in this paper can be easily used to compare the complexity of current or future GNSS signals in specific cases for a wide variety of hardware implementations.

GNSS信號基礎(1)

Source: https://kknews.cc/zh-tw/news/oy5jgj5.html

前言

本文作者為中國科學院大學上海天文台GNSS導航與遙感課題組在讀碩士。碩士期間已經以第一作者身份發表SCI論文一篇,第三作者身份發表SCI論文一篇,第一作者身份發表EI檢索國際會議論文一篇。受邀IGRASS2016及ICG+2016國際會議做口頭報告及討論。

https://www.researchgate.net/profile/Junhai_Li
https://scholar.google.com/citations?user=ApFvqeMAAAAJ&hl=zh-CN&oi=pll

1 GNSS 信號結構

GNSS信號是GNSS衛星向用戶播發的一種用於導航定位的調製波。採用調製波的原因有三點:(1) 作為用戶定位使用的測距碼、導航電文是數位訊號,而數位訊號無法直接在無線信道傳輸;(2)可以有效的搬移頻譜,合理利用頻譜資源;(3)將低頻的導航信息調製到高頻信號中,有利於信號的傳播和提高抗干擾能,減小接收機天線的尺寸。因為GNSS信號為調製波,作為調製波應該包括低頻數據波和高頻信號載波,低頻數據波又包括偽隨機測距碼和導航電文。下面我們將分別介紹這三種信號波。
1.1 載波信號
在通信技術上,載波(Carrier Signal)是一種在調製過程中被用來當作基波的一種高頻信號波,其實質是由振蕩器產生並在信道上傳播的一種電波。一般輸入信號的頻率要低於載波頻率,將輸入信號卷積到高頻載波的過程叫做調製。調製的方式有幅移鍵控(ASK)、頻移鍵控(FSK)、相移鍵控(PSK)。針對於GNSS信號採用的調製方式為相移鍵控(PSK),GNSS信號採用的載波頻率集中在L波段,這是綜合了電磁波的大氣窗口和電磁波的衰減率綜合考量的一個頻率範圍。各導航系統的載波中心頻率分別為:美國GPS信號的載波中心頻率為1575.42MHz(L1)、1227.60MHz(L2)和1176.45MHz(L5),俄羅斯GLONASS信號的載波中心頻率為1602+0.5625a(MHz)和1246+0.4375a(MHz)(a為GLONASS衛星編號),中國北斗導航衛星的載波中心頻率為1561.098MHz(B1I)和1207.140(B2I),歐盟Galileo導航系統的載波中心頻率為1589.74MHz(E1)、1561.1MHz(E2)、1176.45MHz(E5a)、1207.14(E5b)和1278.75MHz(E6)。各導航系統載波頻率占用頻譜分布如圖1.1。


圖1.1 GNSS信號的頻譜分布
1.2 偽隨機噪聲碼
偽隨機噪聲碼(PRN,Pseudo Random Noise)就是GNSS衛星發射器產生的一段能測定GNSS衛星到GNSS接收機距離的二進位編碼,也被稱作測距碼。這段二進位編碼既滿足隨機碼的有關性質,比如說0與1的均勻分布、無自相關性等,又滿足已知的、可預測的、可重複的等特性。偽隨機噪聲碼是由若干個多級反饋移位寄存器所產生的m序列經平移、截短、求模二等一些列複雜處理後而形成的。
GPS衛星的偽隨機噪聲碼分為粗碼(C/A)和精碼(P),都能測定衛星與接收機間距離,但是其碼片長度不同,測距精度也不同。C/A碼(Coarse/Acquisition Code)周期為1ms,共含有1023個碼元,對應每個碼元寬度293.05m,測距精度為±(2-3)m,測距精度比較低,所以稱作「粗碼」(Coarse Code),只調製在L1載波上,可以公開使用,由於C/A碼的周期很短,所以可以用來捕獲信號,也被稱作「捕獲碼」(Acquisition Code);P碼(Precision Code)的周期為一個星期,共還有近6.2萬億個碼元,每個碼元對應的寬度為29.3m,測距精度為±0.3m,調製在L1和L2兩個載波上,採用雙頻觀測可以有效的消除電離層影響。為了提高系統可靠性,美國軍方又將P碼與完全絕密的W碼模二相加產生完全絕密的Y碼,在反欺騙(Anti-proofing)策略生效時,由衛星向下播發,供授權用戶使用。所用的GPS測距碼使用BPSK的方式調製在頻率相同的L波段載波上,以碼分多址技術區分衛星編號,所以GPS的衛星編號以PRNXX來表示。在GPS現代化的過程中,在L2頻段上又增加了民用測距碼L2C,在L1、L2波段上調製新的軍用碼M碼,這兩種測距碼是使用BOC的方式調製到載波上(Borre et al., 2006)。
GPS的C/A碼是由兩個十級移位寄存器產生的GOLD序列進行相加產生的。第一個移位寄存器生成的序列可以表示成多項式G_1=1+X^3+X^10,第二個移位寄存器產生的序列可以用多項式G_2=1+X^2+X^3+X^6+X^8+X^9+X^10。在G_2選擇兩個移位寄存器的輸出進行模2加,再與G_1的第10個移位寄存器相加從而產生C/A碼序列。而GPS的P碼是由兩個1500萬位的PRN序列乘積碼衍生出來的。
圖1.2(a) GPS L1、L2波段測距碼頻譜能量分布圖
圖1.2(b) GPS L1、L2波段測距碼頻譜能量分布圖

GLONASS的偽隨機噪聲碼也是分兩種,粗碼S碼和精碼P碼。S碼碼長511個碼元,碼率為0.511Mcps (chip per second),每個碼元對應的空間距離為587m;P碼碼率5.11Mcps,每個碼元對應的空間距離大約為58.7m,碼長約為5.11x106個碼元,重複周期為1s,遠小於GPS的P碼一個星期的重複周期,所以也有極佳的捕獲特性,但是由於碼長段,相關性不如GPS好(Barry et al., 1991)。GLONASS採用軍民共用的測率,無論是S碼還是P碼的結構均公開。GLONASS的測距碼以BPSK的方式調製在L波段上,採用頻分多址技術區分不同的衛星編號。
GLONASS的S碼序列是由一個九級移位寄存器直接生成產生的,它的生成表達式可以表示成G_s=1+X^5+X^9。P碼序列是由一個25級移位寄存器直接生成產生的,生成的表達式可以記作G_p=1+X^3+X^25.
圖1.3 GLONASS SV1衛星L1波段測距碼頻譜能量分布圖
Galileo的測距碼因為其設計應用領域比較細緻而設計得比較複雜。Galileo信號一共存在於3個頻段共10條信道上,E5頻段上分布4條信道,E6信道上分布3條,E2-L1-E1信道上分布3條。E5頻段上為未加密的測距碼E5a-I、E5a-Q、E5b-I、E5b-Q,碼率均為10.23Mcps,碼長分別為20ms、100ms、4ms、100ms。採用alternate BOC的調製方法調製到載波上;E6頻段上為供政府使用的測距碼E6-A,供商業目的使用的測距碼E6-B、E6-C,它們的碼率均為5.115Mcps,由於碼結構加密,碼長未知,E6-A採用BOC的方式調製,E6-B、E6-C採用的是BPSK的方式調製;E2-L1-E1頻段上存在供政府使用的測距碼L1P,碼率為2.5575Mcps,碼結構加密,供公眾使用的L1F測距碼,碼率為1.023Mcps,碼長分別是4ms和100ms,E2-L1-E1頻段上的3種測距碼均採用BOC的調製方式(Betz et al., 2001)。Galileo與GPS一樣也採用碼分多址的方式區別不同衛星,但是實際上它的信號分布在E5、E6、E2-L1-E1三個頻段上,也可以說Galileo系統的信號既採用了碼分多址,在實際上又以頻分多址加以區分(Galileo ICD, 2010)。
北斗二代導航系統的測距碼分別使用QPSK的方式調製到B1、B2兩個波段的I、Q兩條支路上。B1I和B2I信號測距碼的碼率為2.046Mcps,碼長為2046chip。它們是由兩個11級線性移位寄存器產生的線性序列通過模2加組合產生的,是一種Gold碼。兩個線性序列可以表示為:
G_1=1+X+X^7+X^8+X^9+X^10+X^11
G_2=1+X+X^2+X^3+X^4+X^5+X^8+X^9+X^11
通過對G_2產生的序列的不同抽頭可以實現G_2序列相位的不同偏移,與G_1序列模二加後可生成不同衛星的測距碼,以碼分多址的方式進行頻率復用區分不同衛星。
衛星項目GPSBeidou-2GLONASSGalileoQZSSIRNSS
時間系統GPST(UTC-USNO)BDTGLONASST(UTC-RUS)GST

坐標系統WG-84CGCS2000PZ-90ITRS

星座21+3(6軌道面)5GEO+3IGSO+27MEO24+327+3初期:3IGSO+1GEO最終(2020):4IGSO+3GEO3GEO+4IGSO,2軌道面
衛星試驗衛星:Block I;工作衛星:Block II;Block IIA(衛星間通信);Block IIR;Block IIF(第三民用頻率)試驗階段:Beidou-1A;Beidou-1B;Beidou-1C;商用階段:Compass-M1(第一次發射於2007-04-14)試驗階段:GLONASS-M;商用階段:GLONASS-K;GLONASS-K1;GLONASS-K2;GLONASS-KM試驗衛星:GIOVE-A; GIOVE-B;IOV(In-orbit Validation satellites);FOC(Full Operational Capability)
IRNSS-1A;IRNSS-1B;IRNSS-1C;IRNSS-1D;IRNSS-1E;IRNSS-1F;IRNSS-1G;
調製方式BPSK; MBOCQPSKBPSKBPSK; MBOC; altBOC
BPSK;BOC(5,2)
測距碼CDMACDMAFDMACDMACDMA
調製碼C/A碼; P碼; M碼B1I; B1Q; B2I; B2QS碼; P碼E5a-I; E5a-Q; E5b-I;E5b-Q同GPS;L1-SAIF;LEX(QZSS高精度(3cm)試驗信號)
載波頻率L1:1575.42L2:1227.60L5:1176.45B1I:1561.098;B2I:1207.140L1:1598.0625-1604.25L2:1242.9375-1247.75L3:1197.648-1212.255E1:1589.74E2:1561.1E5a:1176.45E5b:1207.14E6:1278.75L1:1575.42L2:1227.60L5:1176.45LEX:1278.75L5(1176.45);S(2492.028)







表1:各系統信號歸總表(Rao et al., 2011, 2013)
1.3 導航電文
導航電文是由一組含有衛星位置、衛星狀態、鐘差參數及電離層修正參數等一系列重要數據的二進位代碼,其被調製在載波上通過衛星向用戶播發,交由用戶定位時使用。導航電文又稱廣播星曆、預報星曆。不同的導航衛星系統的導航電文的功能基本相同,但具體內容不盡相同。
GPS導航衛星系統導航電文按照導航電文播放的規定格式構成主幀,以50bit/s的速率發送給用戶。內容包括衛星的狀態信息、衛星的運行參數以及電離層延遲改正參數和UTC時間改正等參數,播發一次需要12. 5min。GPS系統以開普勒軌道根數的形式播發並加以衛星攝動擬合參數,星曆參數的時間間隔為2h,通過插值的方式計算GPS衛星在WGS-84坐標系種的瞬時位置。
GLONASS導航衛星有兩種導航電文,分別調製在標準測距碼和精密測距碼。在標準測距碼上調製的導航電文包括5個子幀,每個子幀歷時30s,需要2.5min播發完畢,包括本顆衛星的星曆數據、時間標識,衛星狀態;在精密測距碼上調製的導航電文包括72個子幀,需要12min播發完畢。GLONASS導航系統包含參考曆元的衛星位置、速度及日月對衛星的攝動加速度,星曆參數的時間間隔是30min,採用4階龍格庫塔積分,得到GLONASS衛星在參考曆元在PZ-90坐標系中的瞬時位置。
Galileo衛星導航系統的導航電文按照主幀、子幀、頁面三級格式。一個完整的Galileo衛星導航電文包含一個主幀,持續時間為600s,每個主幀分為12個子幀,每個子幀持續50s,每個子幀包含5個頁面,每個頁面持續時間是10s,頁面是導航電文的基本組成部分。導航電文里包含四類參數,分別是星曆、時鐘修正參數、導航服務參數和曆書。這四類參數通過上述的12個子幀的導航電文向用戶播發並以此來獲取Galileo系統所承諾的各種服務(高書亮 等,2007)。
北斗導航衛星系統導航電文分為D1型和D2型,分別由MEO/IGSO衛星和GEO衛星播發。D1型導航電文包含本衛星的基本導航信息、全部衛星曆書及與其他系統時間同步信息,整個D1型導航電文全部播發完要12分鐘。D2型導航電文包括D1型導航電文內容外加北斗系統完好性及查分信息,格網點電離層信息。

圖1.4 GPS信號示意圖

2 GNSS信號調製

2.1 調製方式
GNSS系統需要多個衛星同時測距才能採用空間後方交會的方法結算接收機位置,但是由於頻譜資源有限,所以GNSS信號系統必須採用擴頻系統。如前文所提到的,GNSS定位所需要的測距碼和導航電文是直接調製在高頻載波上,像這種擴頻方式叫做直接序列擴頻(DSSS)。

圖1.5 GPS PSK調製示意圖
擴頻的過程我們稱為調製,GNSS系統的調製方式主要包括有二進位相移鍵控(Binary Phase Shift Keying, BPSK)、正交相移鍵控(Quadrature Phase Shift keying, QPSK)和二進位偏移載波(Binary Offset Carrier, BOC)。
2.2 調製過程
二進位相移鍵控(BPSK)是相移鍵控中最簡單的一種方式。相移鍵控是利用載波的相位變化來傳遞數字信息,而幅度和頻率保持不變。BPSK通常使用初始相位0和PI相位二進位的0與1。由於其調製的簡單性,所以BPSK的調製方式抗噪聲干擾性最強,即使信號嚴重失真,也能將數位訊號從模擬信號中恢復出來。BPSK信號的時域表達式可以表達為:
早期的GNSS系統均採用BPSK的調製方式,如GPS衛星L1頻段上的C/A碼,L1、L2頻段上的P碼,現代化後的GPS衛星L2頻段上的L2C碼,GLONASS衛星的S碼(標準測距碼)、P碼(精密測距碼),Galileo衛星上的E6頻段上的E6c信道。
圖1.6 BPSK信號調製過程示意圖
圖1.7 BPSK調製示意圖
正交相移鍵控(QPSK)是利用載波的四種不同相位差來表征輸入的數字信息,是四進位移相鍵控。它規定了四種載波相位,分別為45°,135°,225°,275°,調製器輸入的數據是二進位數字序列,為了能和四進位的載波相位配合起來,則需要把二進位數據變換為四進位數據,這就是說需要把二進位數字序列中每兩個比特分成一組,共有四種組合,即00,01,10,11,其中每一組稱為雙比特碼元。每一個雙比特碼元是由兩位二進位信息比特組成,它們分別代表四進位四個符號中的一個符號。QPSK中每次調製可傳輸2個信息比特,這些信息比特是通過載波的四種相位來傳遞的。解調器根據星座圖及接收到的載波信號的相位來判斷發送端發送的信息比特。
QPSK可以看作是兩個正交載波的BPSK信號相干合成的。所以原始的數位訊號經過串並變換,變成兩路速率減半的序列,電平發生器分別產生雙極性的電平信號I與Q,然後對兩路載波進行調製後相加即可得到QPSK信號(Hodgart et al., 2007)。
圖1.9 QPSK調製示意圖
採用QPSK調製方式的導航系統只有我國北斗二代導航系統。
二進位偏移載波技術(Binary Offset Carrier, BOC)是在原有的BPSK調製增加一個二進位副載波,使其頻譜產生適當偏移。這種調製方式的特點是將信號的功率譜發生了分裂,變成了兩個對稱的部分,並且根據所選擇的參數可以變動兩個分裂主瓣之間的距離(Kim et al.,2007)。實際上,BOC調製就是以一個方波作為副載波,對調製在主頻的上的信號再一次調頻,使信號分別稱兩個部分,位於主載波的左右兩側,所以BOC其實是一種頻譜賦形技術。基於BOC技術及其衍生出的類BOC技術被廣泛的應用於現代GNSS系統里,如Galileo 的E2-L1-E1波段使用了MBOC(Multiplexed Binary Offset Carrier)調製技術、現代化後的GPS的L2上的民用碼L2C,全新的軍用碼M使用了CBOC(Composite Binary Offset Carrier)調製技術,Galileo的E5頻段上使用了altBOC(alternated Binary Offset Carrier)調製技術(Avila-Rodriguez et al., 2006; Yao et al., 2010)。
圖1.10 BOC調製過程示意圖
圖1.11 BOC調製技術與BPSK調製技術波瓣對比

3 GNSS信號捕獲與跟蹤

3.1 捕獲方法
GNSS信號的捕獲是指接收機通過相關搜獲的過程第一次發現GNSS信號並且記錄信號的頻移和相移參數以鎖定信號的過程,它是信號解擴解調的必要步驟。GNSS接收機的捕獲系統 常常由三部分組成:相關器、信號檢測器和搜索控制邏輯。
GNSS衛星接收機捕獲信號的基本原理是通過接收機內部的PRN碼發生器復現需要捕獲的衛星的PRN碼。移動接收機生成的PRN碼與接收到的PRN碼進行互相關處理,當接收機所復現的PRN碼與所接收到PRN碼有最大相關時,即捕獲到所要補捕獲的衛星的導航信號。在捕獲的過程中,由於接收機與衛星間存在視距的相對運動,且接收機碼發生器基準振蕩器的不穩定,都會造成一個明顯的都卜勒頻移效應。所以導航信號的捕獲過程是碼與載波二維的信號復現過程。在實現的過程中,一般會首先搜索衛星的載波都卜勒頻移,然後跟蹤衛星的載波都卜勒效應,在載波的都卜勒效應里實現對碼的匹配。因為如果先搜索復現碼,即使一開始成功的捕獲到了衛星信號,也會由於載波頻率的誤差,失去對衛星的跟蹤。在搜索都卜勒頻率時,首先調節接收機碼發生器的基準振蕩器的標稱頻率以補償接收機和衛星之間的視距運動造成的都卜勒頻移。接收機的基準振蕩器相對於規定頻率也會有一個頻率偏移,但是這個偏移對於接收機正在跟蹤的所有的衛星來說是一致的,可以由導航濾波器作為一個時間偏移率的參數來確定(Blunt et al., 2007)。
根據捕獲系統的相關器、信號檢測器的配置的不同,有多種方式實現信號的捕獲。碼串行載波串行的搜索方式是指粗略估計一個載波頻移,將本地碼與接收的信號碼相關,相關超過閾值,記錄此時的相位和頻移以實現後面的跟蹤,當沒有超過閾值,移動碼塊繼續相關,如果移動超過一個碼周期仍沒有超過閾值,變動載波頻移,繼續進行碼相關操作,直至碼相關超過閾值。碼串行載波並行搜索方式是,將本地碼與Nf個頻點上對應的載波上的信號碼進行相關取得Nf個相關值,若有超過閾值的頻點,記錄下當前相位和頻率以實現跟蹤,當沒有頻點超過閾值,移動碼片繼續相關操作。碼並行載波串行的搜索方式是,使用N個碼相關器對給定的載波頻移上的信號碼進行相關操作,找出超過閾值的碼片並記錄當前載波頻移完成信號捕獲。碼並行載波並行的搜索方式是N個碼相關器和Nf個頻點上同時進行相關操作,找出超過閾值的碼片頻移組合,一次性完成對信號的捕獲。
信號被捕獲後,跟蹤模塊使接收機在一定動態範圍內保持對載波和測距碼的同步,同時完成對載波頻移及相位及測距碼的相位進行精確的估計,獲得導航計算的原始數據。
3.2信號接收與解調
完成對GNSS信號進行捕獲跟蹤後,接收機接收到的衛星信號是一種調製波,在接收到的調製波中提取載波頻移、測距碼信號及導航電文的過程叫做解調。
GPS衛星的L1、L2波段上的測距碼均以BPSK的方式調製在載波上,所以本文以BPSK解調為例介紹解調的原理與步驟。
BPSK信號的解調往往都是採用相干解調的方法。原理是用接收機產生的本地碼,在鎖定跟蹤的條件下與衛星的測距碼相干。因為本地碼與測距碼經過相關時延差後可以實現完全同步,所以原來×-1的相位,現在又一次×-1而得到恢復,之後在低通濾波器的作用下,過濾掉信號的噪聲和導航電文的影響(無法提前知道導航電文的碼結構),最後通過抽樣判決器恢復出數位訊號,從而實現BPSK信號的解調。
圖1.12 基於BPSK調至的GPS信號解調示意圖
圖1.13 基於BPSK信號調製的解調示例

參考文獻:

Avila-Rodriguez, J.-A., G.W. Hein, S. Wallner, J.-L. Issler, L. Ries, L. Lestarquit, A. de Latour, J. Godet, F. Bastide, A.R. Pratt, J.I.R. Owen, M. Falcone, T. Burger, The MBOC Modulation: The Final Touch to the Galileo Frequency and Signal Plan, Proceedings of the International Technical Meeting of the Institute of Navigation, ION-GNSS 2006, 25-28 September, 2006, Fort Worth, Texas, USA.
Barry, A.Stein, I.Tsang,等. GPS與GLONASS的偽碼比較[J]. 遙測遙控, 1991(4):66-71.
Betz, J.W., Binary Offset Carrier Modulations for Radionavigation, NAVIGATION: Journal of The Institute of Navigation Vol. 48, No. 4, Winter 2001/02
Blunt P. Advanced global navigation satellite system receiver design[D]. PhD Thesis, 2007.
Borre K, Akos D, Bertelsen N, et al. A software-defined GPS and Galileo receiver: Single-frequency approach[C]//ION 18th international technical meeting of the satellite division. Long Beach, CA, USA. 2005.
Galileo Open Service Signal In Space Interface Control Document (OS SIS ICD) Issue 1, Revision 1, 1 September 2010, 2010
高書亮, 楊東凱, 洪晟. Galileo系統導航電文介紹[J]. 全球定位系統, 2007, 32(4):21-25.
Hodgart M S, Blunt P D. Dual estimate receiver of binary offset carrier modulated signals for global navigation satellite systems[J]. Electronics letters, 2007, 43(16): 877-878.
Kaplan, E. D. and C. Hegarty, Understanding GPS: Principles and Applications-2nd Edition, Chapter 4
Kim S, Yoo S, Yoon S, et al. A novel unambiguous multipath mitigation scheme for BOC (kn, n) tracking in GNSS[C]//Applications and the Internet Workshops, 2007. SAINT Workshops 2007. International Symposium on. IEEE, 2007: 57-57.
Langley, R B., GLONASS的評述和發展[J]. 飛行器測控學報, 1998(1):75-82.
Rao V G, Lachapalle G, Vijaykumar S B. Analysis of IRNSS over India subcontinent, Proceedings of 2011 ION ITM.SanDiego:ION,2011:1150-1162.
Rao V G, Lachapelle G. Combining GAGAN with IRNSS. Coordinates, 2013, IX(4): 1-5.
Unwin M. The design and implementation of a small satellite navigation unit based on a global positioning system receiver[D]. University of Surrey, 1995.
Yao Z, Cui X, Lu M, et al. Pseudo-correlation-function-based unambiguous tracking technique for sine-BOC signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1782-1796.
中國衛星導航系統管理辦公室:北斗衛星導航系統空間信號接口控制文件,version2.1